Posts Tagged HiL

Apr 25 2018

ADAS Systemvalidierung auf der Basis von realen Fahrdaten

Radar-Datenlogger verhindert Autounfälle

ADAS Systemvalidierung auf der Basis von realen Fahrdaten

Der DP²4R Datenlogger von embedded brains erfasst bis zu 4 x 320 MBit/s. (Bildquelle: embedded brains GmbH)

Zukünftig unterstützen Automobile ihre Fahrer zunehmend aktiv beim Autofahren. Über eingebaute Sensoren, Kameras und intelligente Software-/ Hardware-Systeme nehmen Fahrzeuge ihre Umgebung wahr und interpretieren diese Informationen. Derzeit entwickeln einige Unternehmen Fahrerassistenzsysteme, die über Radar-/ Infrarotsysteme das Geschehen rund um das Fahrzeug überwachen. Kernelement sind dabei spezialisierte Mikrocontroller, z.B. von NXP. Die Radardaten werden vom Mikrocontroller empfangen und weiterverarbeitet, so dass nicht mehr wie bisher die gesamten Bildinformationen weitergeleitet werden, sondern nur noch das Ergebnis.

Die Bilderfassung und -datenverarbeitung finden in einem System statt, lediglich die ausgewerteten Daten werden nach außen gegeben. Das hat den Vorteil, dass alle Funktionen in einem Gehäuse zusammengefasst sind. Allerdings bringt dieser Ansatz in der Entwicklung Probleme mit sich. Denn die Rohdaten, aus denen die Software Objekte identifiziert, sind nur chipintern verfügbar. Das hat zum Beispiel zur Folge, dass vom Fahrer während einer Testfahrt erfasste Fehler nicht analysiert werden können. Denn stellt ein Fahrer während der Testfahrt fest, dass ein Objekt vom System nicht richtig erkannt wurde, ist es nicht möglich, die Ursachen dieses Fehlers in der Software zu identifizieren.

Eine Lösung des Problems liefert der Datenlogger DP24R von embedded brains. Die Headunit des Datenloggers wird direkt an die Radarsensoren angekoppelt, so dass der Datenlogger Zugriff auf die Rohdaten hat und sie aufzeichnen kann.

Typischerweise sind vier Sensoren an den vier Ecken des Fahrzeugs angebracht, um die gesamte Umgebung des Fahrzeugs überwachen zu können. Mithilfe von vier angeschlossenen Headunits können die Rohdaten während der Testfahrten aufgezeichnet werden, wobei die Aufzeichnungskapazität des Datenloggers 10 Stunden beträgt. Nach der Testfahrt kann der Entwickler die gespeicherten Rohdaten in sein System am Arbeitsplatz einspeisen und somit entscheiden, ob die Bilderfassung fehlerhaft ist oder ob ein Software-Fehler vorliegt. Sollte letzteres der Fall sein, kann der Entwickler seine Algorithmen solange modifizieren, bis sie anhand der gespeicherten Rohdaten genau die Objekte erkennt, die sie erkennen muss.

Der Datenlogger eignet sich auch für die Entwicklung von Bildverarbeitungsalgorithmen. Für die Algorithmen-Entwicklung benötigen die Entwickler Live-Daten – kein Problem: auch diese Daten kann der Datenlogger zur Verfügung stellen. Und er bietet hierfür noch eine nützliche Zusatzfunktion: Videokameras im Fahrzeug zeichnen zeitsynchron zur Radar-Datenerfassung mit auf. Der optisch-visuelle Vergleich zwischen den verarbeiteten Radardaten und den Videos stellt den ersten Schritt bei der Entwicklung der Algorithmen dar. Der Datenlogger von embedded brains bietet die Möglichkeit, die Daten mit einem Zeitstempel zu versehen, so dass die Daten von allen vier Sensoren bei der Analyse auch zeitlich synchron wieder zusammengesetzt werden können.

Hauptmerkmale des DP24R
Das System kann folgende Anwendungsdaten aufzeichnen:
– Radar Rohdaten
– Verarbeitete Radardaten
– Verschiedene Zusatzdaten
– Datenrate: > 400 Mbit/s.

In das System können folgende Simulationsdaten importiert werden:
– Radar Rohdaten
– Verschiedene Zusatzdaten
– Datenrate: >300 Mbit/s.

Mixed-mode:
– Aufzeichnen und Einspielen von Daten

Vorteile des DP24R
– Das System ist für die meisten Mikrocontroller geeignet
– Multi-Head Design für einfache Einbindung
– Non-intrusive Datenerfassung
– Hohe Speicherkapazität: bis zu 10 Stunden

Wichtigste Anwendungsbereiche
– Fahrerassistenzsysteme
– Fahrwerks-Management
– Prüfstände, HIL

Ueber die embedded brains GmbH
Die embedded brains GmbH mit Hauptsitz in Puchheim bei Muenchen ist ein inhabergefuehrtes Unternehmen, das auf maßgeschneiderte Soft- und Hardwareentwicklung fuer leistungsstarke Single- und Multicore-Systeme spezialisiert ist. embedded brains steht den Kunden auch als Berater zur Seite und versetzt sie in die Lage, ihr Projekt selbstaendig umzusetzen. Ihre umfangreiche Expertise ermoeglicht es den Experten von embedded brains, Technologien, die sie in einem Bereich etablieren konnten, in einen anderen Bereich zu uebertragen, egal ob Telekommunikation, Industrieautomation, Consumerprodukte, Automotive, Luft- und Raumfahrt. Die Consulting-Leistung reicht von der Konzepterarbeitung, ueber die Erarbeitung von technischen Loesungsmoeglichkeiten bis zu deren Umsetzung.

Das Unternehmen wurde 2005 von den Diplom-Ingenieuren der Elektrotechnik, Peter Rasmussen und Thomas Doerfler, gegruendet. Beide verfuegen ueber mehr als 20 Jahre Erfahrung und fundierte technische Expertise in der Systementwicklung. Zuvor waren beide fuer Unternehmen wie Dornier, Eurocopter, Siemens, Alcatel Siemens, Thomson, Telenorma und Hilf Microcomputer-Consulting als Berater und Mitarbeiter taetig.

Die Geschaeftsfuehrer und ihr Entwicklerteam beraten und begleiten Unternehmen aus unterschiedlichen Branchen ueber den ganzen Entwicklungsprozess hinweg und uebernehmen mit Hilfe von Partnerunternehmen nach Abschluss der Prototypenentwicklung auch die Serienueberfuehrung und Fertigung.

Zu den Kunden von embedded brains zaehlen unter anderem BMW, E&K Automation, Bang & Olufsen, Fraunhofer ESK und Fraunhofer ITWM, Tyco Electronics, MAN Diesel & Turbo sowie Bosch Rexroth AG.

Weitere Informationen finden Sie unter: www.embedded-brains.de

Firmenkontakt
embedded brains GmbH
Thomas Dörfler
Dornierstr. 4
82178 Puchheim
49 (0)89-18 94741-00
info@embedded-brains.de
http://www.embedded-brains.de

Pressekontakt
Lermann Public Relations
Sylvia Lermann
Enzianstr. 2c
85591 Vaterstetten
+49 (0)8106-300 899
sylvia@lermann-pr.com
http://www.lermann-pr.com

Aug 9 2011

Auf Echtzeit getrimmt: Aktive CAN-Bus-Karten von COSATEQ

Bereit für den Betrieb in Windows-, Linux-, LabVIEW- und Agilent-VEE-Umgebungen

Aktive CAN-Bus-Karten von COSATEQ

Wangen, 01. August 2011 – Der Echtzeit-Spezialist COSATEQ bietet nach einer ausgiebigen Betaphase zwei aktive CAN-Bus-Karten (CO-PCICAN/4 für PCI-Bus, CO-cPCICAN/4 für CompactPCI) an. Die Karten entlasten den Host-PC von zahlreichen Kommunikationsaufgaben. In zeitkritischen Anwendungen wie beispielsweise HiL-Prüfständen (Hardware-in-the-Loop) bleibt dem Host mehr Zeit für die Ausführung des Simulationsmodells. Im Loopback-Betrieb wurden 11,5 Mikrosekunden Rechenzeit pro empfangener Nachricht ermittelt.

Speed by Design: Die aktiven CAN-Bus-Karten CO-PCICAN/4 und CO-cPCICAN/4 unterscheiden sich in einem wesentlichen Detail von klassischen aktiven Karten. „COSATEQ hat bei der Entwicklung der beiden CAN-Bus-Karten auf eine möglichst geringe Anzahl von Buszugriffen geachtet, die sich in der Hauptsache auf den Datentransfer beschränken“, fasst Martin Siemens, Geschäftsführer der Cosateq GmbH & Co. KG, das Design-Konzept zusammen.
In klassischen aktiven CAN-Bus-Karten kommuniziert der PC über die Bus-Schnittstelle direkt mit einem Mikrocontroller auf der CAN-Bus-Karte. Der PC stellt beispielsweise eine Anfrage an den Mikrocontroller und wartet, bis dieser antwortet. Untersuchungen an solchen Karten haben gezeigt, dass selbst ein Design mit zwei 32-Bit Mikrocontrollern auf der Karte oft nicht ausreicht, um in einem HiL-Prüfstand Daten aus vier Kanälen kontinuierlich an den Host-Bus zu übergeben.
„In Maschinenbau, Automobil-Industrie sowie Luft- und Raumfahrt gehören Prüfstände auf Hardware-in-the-Loop-Basis (HiL) mittlerweile zum Stand der Technik. Bei einem HiL-Prüfstand wird eine reale Komponente, beispielsweise ein Steuergerät, in einer Reglerschleife betrieben, während die Regelstrecke, beispielweise ein Prozess in einer Fertigungsanlage, in Echtzeit vom Host simuliert wird. Klassische CAN-Bus-Karten sind hier oft der Flaschenhals“, verdeutlicht Martin Siemens die Wichtigkeit einer schnellen CAN-Bus-Karte.

Minimalistische Kommunikation
Das Design von COSATEQ nutzt zur Kommunikation zwischen Mikrocontroller und Host-Bus-Interface ein Dual-Ported RAM (DP-RAM). Jeder der beiden 32-Bit Mikrocontroller ist über ein DP-RAM an das Host-Bus-Interface angebunden. Da sowohl der Host-Bus (PCI-Bus oder CompactPCI-Bus) als auch die beiden Mikrocontroller relativ unabhängig voneinander auf die DP-RAMs zugreifen können, muss der PC nicht auf die Mikrocontroller warten, sondern kann seine Daten direkt aus dem DP-RAM auslesen bzw. reinschreiben. Das gesamte CAN-Bus-Protokoll-Handling wird vom Controller erledigt. Die CAN-Bus-Telegramme werden in Warteschlangen (Queues) zwischengespeichert.

Geringe Belastung des Host-PCs
Da die maximale Geschwindigkeit des CAN-Bus nur 1 MBit/s beträgt, überlastet selbst eine hohe Anzahl von zu empfangenden oder zu sendenden CAN-Bus-Telegrammen einen normalen PC nicht. Auf dem PC könnte z. B. ein MATLAB-Modell unter der Echtzeitsimulationsumgebung SCALE RT laufen. Die empfangenen CAN-Telegramme werden dabei entsprechend ihrer Object-ID vom MATLAB-Modell gefiltert. Wie kurz die Rechenzeit zum Abholen der empfangenen CAN-Daten ist, hat COSATEQ in einer dokumentierten Versuchsanordnung ermittelt. Im Loopback-Betrieb ermittelte das MATLAB-Modell 11,5 Mikrosekunden Rechenzeit pro empfangene Nachricht. Damit qualifiziert sich die Karte für den Einsatz in vielen zeitkritischen Anwendungen.

Polling oder Interrupt-Betrieb
Mit der Firmware legt der Anwender fest, ob die Karte im Polling- oder im Interrupt-Modus betrieben werden soll. In Echtzeit-Umgebungen wie SCALE-RT muss die Karte im Polling-Modus laufen. Unter Windows oder Linux ist der Interrupt-Modus erforderlich, da unter diesen Betriebssystemen keine deterministischen Reaktionszeiten sichergestellt sind. Der Windows- oder Linux-Betrieb bietet sich für Prüfstände und anderen Anwendungen an, die an CAN angebunden werden, aber keine Echtzeitbedingungen erfüllen müssen.

Kommunikationsfreudiges Design
Die Karte bietet vier voneinander unabhängige CAN-Kanäle, wobei diese paarweise voneinander elektrisch isoliert sind. Alle Kanäle sind frei konfigurierbar. COSATEQ stellt Treiber für SCALE-RT, Windows, Linux, LabVIEW und Agilent VEE zur Verfügung. CANopen wird durch CANfestival unterstützt. Prinzipiell kann der Anwender die Karte an jede Umgebung anpassen, die Raw-CAN-Daten benötigt.

Über COSATEQ
Die COSATEQ GmbH & Co. KG bietet innovative Softwarelösungen für die Simulationstechnik. Das selbst entwickelte Echtzeit Simulationssystem SCALE-RT setzt Maßstäbe in Bezug auf Verfügbarkeit und Bedienkomfort.
Darüber hinaus arbeitet ein Team von hoch spezialisierten Ingenieuren am Standort Wangen als qualifizierter Know-how-Provider für die Bereiche Maschinenbau, Luft- und Raumfahrt sowie Transportation. Kernkompetenzen sind die professionelle Simulations- und Regelungstechnik sowie die Prüfstandsentwicklung (HiL-/SiL-Simulatoren).

Kontakt:
Cosateq
Martin Siemens
Siemensstraße 12
88239 Wangen
+49 7522 9749 0

www.cosateq.de
martin.siemens@cosateq.com

Pressekontakt:
Fleishman-Hillard Germany GmbH
Ortrud Wenzel
Herzog-Wilhelm-Straße 26
80331 München
ortrud.wenzel@fleishmaneurope.com
089-230 31 60
http://www.fleishmaneurope.de